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1. INTRODUCTION

This is a paperabout the consistencyof the notion of spinor as it is widely
understoodand used. Results are easily derivedand would be easily foreseen

from the beginning, once the blunt questionhad been properly stated.Never-

thelessI think that it is amply motivatedby thegaietywith which suchconsisten-
cy is taken for grantedin many paperson quantumfield theoryin curvedspace-

-times.
Let (M~,g)be an oriented pseudo-Riemannianmanifold with metric g of

index k (the numberof negativevaluesin the diagonal form of g). Undercertain
topological conditions it is possibleto have a spinor structureon (M, g), which

is a principal bundle ir : S-÷ M with group Spin (n,k) togetherwith a principal
bundle epimorphism4) : S—~SO(M,g), which correspondsto the double covering
4) : Spin (n, k) —* SO(n,k). Here, SO(M,g) is the principal bundle of oriented
g-orthonormal frames. If S is a representationspace for Spin (n, k), a spinor

(field) is a smoothfunction ~,1i:S-+Swith the property i,li oR =slo i,Li, where
R denotesright action.Thus,spinorscanbe viewedlocally as (perhaps)two-va-

lued equivariantfunctions on SO(M,g). In this sense,they <<live>> in SO(M,g),
but not, in general,in the wholeorientedframe bundleF~(M).

This seemsrather queer from a physical point of view; indeed, one should

ask about the required<<g-orthonormality>>of an apparatusthat would be intend-
ed to extract some spinorial information about particles.Less metaphysicalare
the following questions:are spinors compatible with a variational treatmentof
gravity?, are they compatiblewith a quantumtheoryof gravity thatwould speak
aboutsomethingas the probabilityof a gravity state?In both cases,oneis bound

to deal with a family of pseudo-Riemannianmatrices,eachwith itsown principal
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bundle SO(M,g), whence the answer is, in principle, in the negative. Spinors
areghettoedto their own principal bundleand forbidden in otherplaces.

This bad featureappearsalso when they are confrontedwith the Lie deriva-

tive. The best that can be doneis the definition given by Y. Kosmann[5] in her

thesis,but it is clear that such derivativesdo not form a Lie algebra;moreover,
if X, Y are vector fields on M andwe put 0(X, fl = [LX, L YJ — L [X, Y], where

LX is the Kosmannderivative with respect to X, then 0 dependson the 1 -jet
of X and Y; in otherwords, 0 is not a tensor field that could stand for a sort of
curvature.The reason for this is always the same:such derivativestake into

accountonly the <<Killing part>> of the vector fields; they are unnaturallyforced
to act as Killing vectorfields, that is as fields on SO(M,g), and they rebelagainst
it by showingtheir non-Killing part in the expressionof 0.

So, one is led to ask whether theremight be someextensionof the definition
of spinorsthat would renderthemcompatiblewith thedifferent pseudo-Rieman-

nian metrics in a differentiable manifold. In an axiomaticway we ask for a new
definition with the following conditions:i) naturality; ii) the new spinorsshould
be as similar as possible to the old ones (i.e. they must be sectionsof a vector

bundleoverM with a group containingSpin (n, k), etc.); iii) if a specific pseudo-
-Riemannianmetric on M,g, hasbeenchosen,a newspinor shouldlook formally,
from thereferencesin SO(M,g), the sameas an old one.

The possiblesolutionsare given by two principal bundles(P,~r,M, G), (F,
7TF,

M, H), the latter being a natural subbundleof F~(M),togetherwith a double
covering ‘I’ : G -÷ H and an epimorphismof principal bundles ~I’ : P -* F cor-
respondingto ‘I’. Leavingout low-dimensionalexceptions,four typescanappear:

I. G = G
1, the double covering (connectedif possible) of H = Gl~(n;IR),

F=F~(M).

II. G = G2, the double covering (connectedif possible) of H = Sl(n; IR),

F = F~(M)/IRt

III. G = U(l) x G2, H = U(l) x Sl(n; IR), F = F~(M)/Z(r), where Z(r) =

={emr}~E~,r>O.

IV. G = (l7~T)x G2)/7L2, U(l) the connecteddouble covering of U(l), H

andF asin III.
A spinor in the new sensewould be a sectionof a vector bundleassociatedto

P by a representationof G. Of course,since Spin (n, k) is a subgroupof G, the
new spinors would appearas usual spinors oncegiven a reductionof F+(M) to

SO(n,k).

Now, by a well known theoremon Lie groups,all finite-dimensionalrepresen-
tations of the listed groups G are in fact representationsgiven, via ‘1’, by repre-
sentationsof H. Therefore,there are no finite-dimensional true spinorscompati-

ble with thefamily of pseudo-Riemannianmetricson a smoothorientedmanifold
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M. In fact, they are tensorfields in a broadsense.
Thus, for instance,to deal with variations of the metric in a quantumfield

theory whosemomentum-energytensorcontainstrue spinorsis, strictly speaking,
meaningless.

A bypassfor this disappointmentcould perhapsbe the treatmentof fermions

recentlydevelopedby I.M. BennandR.W. Tucker [1].
I wish to thank R.Sivera,F. Mascaroand F. Carrerasby helpful conversations,

and S.I. Anderson who gave me the idea of approachingthis problem in an

axiomaticfashion.

2. PRELIMINARIES

Let SO(n,k) be the group of linear automorphismsof lR’1 that preservethe
n—k n

bilinear form (x,y) = ~ x.y. — ~ x.y., which is said to have index k.

We put i~ = (e
1, e1), where the e~constitute the canonicalbasis of ~, and

denoteby SO~(n,k) the componentof theidentity in SO(n,k). 4) : Spin (n,k) —*

-÷SO(n,k) is a double covering with ker4) = ± 1, such that Spin~(n,k) =

= 4~
1(SO. (n, k)) is connectedfor n> 1 with the exceptionn = 2, k = 1. If

G is a connectedLie group,we shall putDG to denotethe (connectedif possible)
double coveringof G. Let Gl~(n;lR) be the subgroupof G1(n; lR) of matrices
with positivedeterminant,and “I’ :DGl~(n;lR)-+Gl~(n;lR)the double covering

homomorphism.Then ‘I’’(SO~(n,k)) Spin~(n,k) as it is easily proved. Let
DG1~(n;IR) —~ Gi(S) be a representationon the finite-dimensionalvector

spaceS. Then ~ factorizesas i~= o ‘4 wherei~is a representationof Gl+(n; 11~)
on S; the sameoccurs for DS1(n;IR). This is an immediatecorollary of well-

-knownresults on Lie groups[see4, XVII, 3.3].
Let M°, n ~ 1, be an orientable and oriented differentiable manifold that

admits a pseudo-Riemannianmetric of index k, g, and lrF : F+(M) -+ M be the
principal oriented frame bundle.ThenF~(M)has a reduction to SO(n,k) that
consistsof the orientedg-orthonormalframesz = (z

1) EF÷(M),that is g(z1,z1) =

= ?lq; we denotethis reductionby
7rg : SO(M,g) -÷ M.

A spinor structure over (M,g) is a principal bundle (S,7r,M, Spin(n,k))

together with an epimorphism of principal bundles ~1’: S —* SO(M,g) which
correspondsto 4) :Spin(n,k)—~’SO(n,k);that is foreachuES,sESpin(n,k)
we have 4)(R

5u)= R,~,(5)4)(u),where R denotesright action. For the sake of

clarity we shallwrite sometimesU s insteadR5u.
We remarkthat if U C Mis connectedand simply connected,and0 : ir~‘(LI) -*

—~ U x SO(n,k) is a trivialization of SO(M,g), then thereareexactlytwo triviali-
zations ~1i : 7r ‘(U) -÷ U x Spin (n, k) of S making commutativethe following

diagram
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UxSpin(n,k)

I(id,4))

UxSO(n,k).

Let S be a finite-dimensionalvectorspaceon which Spin (n, k) acts through

somerepresentation.That actioninducesavectorbundle : E -+ M with fiber S,

associatedto S, whosesectionsare called spinors.Equivalently,one can look at
spinorsassmoothmaps~ :S-* Ssuchthat ~ oR

5 = s~o ~ for eachsE Spin (n, k).

3. STATEMENT OF THE PROBLEM

Assumethat we want to considervariations of g in the senseof variational
calculus,or that M stands for space-timeandone is looking for a quantization

of gravity in such a mannerthat different statesof the metric are to be dealt
with. In both casesit is necessaryto considerthe set of pseudo-Riemannian

metricson M.
Since the definition of spinors demandsa previouschoice of a metric on M,

there is no evidenceabout the questionwhether the notion of spinor can be
madecompatiblewith different metrics.So, the desireof handlingspinorsconsi-
stentlywith variationalprinciplesthat takeinto accountvariationson the metric,

or the desireof building a quantumtheory of gravitation with spinors,leadsto
the following

PROBLEM. Find out a notion of spinor compatible with the different pseudo-
-Riemannianmetricson a differentiablemanifold.

It is obvious that a solution of this problemwill be the moresuitableas the
betterit fits the following conditions:

i) naturality;
ii) the new concept must be as similar as possible to the usualnotion of a

spinor;and this similarity will be the ideal oneif

iii) whenevera specific pseudo-Riemannianmetric on M, g, hasbeenchosen,
thenew notioncoincidesformally with theold.

Let us put gradually in precisetermsthe precedingconditions.As for ii), we
begin by demandingthat a (new) spinor on M be a crosssectionof some vector
bundle

7rE : E -+ M with a certain fiber S. We will not specifythe vectorspace5,

exceptthat Spin(n, k) shouldact linearlyon Sontheleft, andthat — 1 E Spin (n,
k) actson S asthe changeof sign, so that the usualprescriptionthat after a 2ir

rotation a spinor changessign is retained;this, of course, is also the unique
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conceivablesimple mannerof satisfyingiii). In brief, we demandthat theremust

be an injection of Spin (n, k) into Gi(S), which makes of Spin (n, k) a closed
subgroupof GI(S),andsuchthat — 1 E Spin (n, k) goesto — 1 E Gl(S).

Let G be the set of pseudo-Riemannianmetrics of index k on M. We can
identify G with the set of crosssectionsof the quotientbundleF~(M)/SO(n,k),

denoted by F(F~(M)/SO(n,k)). To satisfy iii) we demandthat to eachgE G
thereshouldbe associatedsomereductionof the groupof E to Spin(n, k). And
if ~.i(g)is the principal bundle of the basesof E definedby that reduction,there

must be a principal bundleepimorphism4)~: j.z(g) -+ SO(M,g) correspondingto
4) : Spin(n, k)—~~SO(n,k). Thus, a sectionof E, when viewed from the points
of p(g) only, looks exactlyas a usualspinor,the only possibledifferencebeing

the choiceof thefiber S.
Let (P, ir, M, Gi(S)) be the principal bundle of basesof the vectorbundleE.

Since we supposethat Spin(n, k) is a closedsubgroupof Gl(S), the reductions

of E to the group Spin (n, k) are in one-to-onecorrespondencewith the sections
of the bundle P/Spin(n, k). Condition iii) demands,therefore,the existenceof

a map .t : I’(F~(M)/SO(n,k)) -÷ I’ (P/Spin(n, k)), and also a principal bundle
epimorphism4)~: ~(g) -÷ SO(M,g) for eachg E G, suchthat4)g(R

5U) = R~(5)4)5(u)

for all s E Spin (n, k), u E ~i(g).
Now we can elaborateon conditioni). The mostobviousconditionof naturali-

ty consistsof requiringthat ~uand shouldbe <<fibereds..That is, ji mustproceed

from a map,which we keepdenotingby p,

F~(M)/SO(n,k) P/Spin(n,’k)

that makescommutativethis diagramand is locally trivial. Local triviality means
that we canlocally model JI and into standardmaps.

Hence,we musthave a smoothmap

Gl~(n;IR)/SO(n,k) -÷ Gl(S)/Spin(n, k)

such that i.z0(SO(n,k)) = Spin (n, k). This last conditionis not strictly necessary
but it facilitatescomputationsand doesnot meana lossof generalitydue to the
homogeneity of both manifolds. Also, for each class A SO(n,k) E Gl~(n;
IR)/SO(n,k) we must have a smooth surjective map

4)A : .u
0(A . SO(n,k)) -*

-÷A~SO(n,k) such that
4)A(a s) = 4)A(a). 4)(s) for all aE~i

0(A~SO(n,k)),
s E Spin(n, k).

As for the local modelling of j.t and
4)g’ we requirethe existenceof an open

covering{ U
1},~~of M (for instance,the U being simply connected,seeremark
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at the Introduction), such that for each/ EJ and eachtrivialization (U1, 0~)of

F~(M), there must exist a trivialization (U1, 0~)of P that makescommutative

the following diagram

ir~
1((~,)/Spin(ii, k) U

1 x Gl(S)/Spin(n,k)

(1)

k) x Gl~(n;IR)/SO(n,k),

where and are the induced trivializations,. and such that for eachgE G

we have0~O

4)g= 4)~.(~)0 ~1I.onp(g)f~.
/ I /

4. THERE ARE NO SUCH SPINORS

Let Gl(S)’= Gl(S)/±I, F’ =P/±I, and let p :P-÷P’, p
0:Gl(S)-+Gl(S)’

be the naturalprojections.Since± 1 is aclosednormalsubgroupof Gi(S), Gi(S)’

is a Lie group, ir’ : F’ -÷M with ~r’op = ir, is a principal bundle with group
Gi(S)’, and p0, p are epimorphisms.The groupSO(n,k) actsfreely on the right

upon Gi(S)’ by PQ(p0(u))=P0(u ~s), where sEcF
1(Q), QESO(n,k).Thus,

p

0 inducesa mapj5,,~: Gl(S)/Spin(n, k) -+ Gl(S)’750(n,k).
Let A E Gl~(n;IR) and put ‘

1A :p~
0Q.t0(A. 50(n,k))) -*A . SO(n,k) defined

by ‘~A°P0= There is a unique map v0 : Gl~(n;lR) -+ Gl(S)’ such that ~
4)A

0 ~
0)(A) = A for every A E Gl~(n;IR), and since obviously

4)A ° P~= PQ °

we havePQ(VØ(A)) = v
0(A . Q), Q E SO(n,k).

Inthesarnewaywe definemapsv :F÷(M)—*P’,~:P/Spin(n, k)-÷P’/SO(n,k),

and a map
4)g :~(~(g))-+ SO(M,g) for eachg E G.

LEMMA. isa Lie grouphomomorphismandker C ~ U

Proof Let UE{U,}IEJ and let 0 :ir;’(U)-÷ Ux Gl~(n;JR),~,Ji:ir’(U)-÷ Ux
x GI(S) betrivializations of F~(M)and F, respectively,that make the diagram

(1) commutative. Let 0’, with 0’ op p

0o 0, be the induced trivialization of

F’. Then thefollowing diagramis commutative

~ >UxG1(S)’

(2) 1~
ir
1(U) ~ UxGl~(n;1R),

and,given 0, sucha map O’is unique,as it is easily checked.Let A E Gl~(n;IR),

so that ‘y = XA °0is anothertrivialization of F~(M)on ir~1(U).Thentheremust
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be someuniqueelementr0(A) E Gl(S)’ such that the trivialization Xr(A) ° 0’ of
P’ on ir’’(U), togetherwith ‘y, makesdiagram (2) commutative.Thus, if zE

E

~‘ro(A)° ~1”° ~)(z)= r0(A) . (0’(p(z))) = r0(A) . p(çt~(z))= v0(A ~0(z)).

If we put B = 0(z), we conclude that for all A,BE Gl~(n;IR) we have
v0(A . B) = r0(A) v0(B), and since p0(l) = 1 becauseji0(SO(n,k)) = Spin (n, k),
then v0(A . B) = v0(A) v0(B).Also, V0 is smoothas a consequenceof the follow-
ing commutativediagram

Gl~(n;lR) ~ Gi(S)’

-I, ...

Gl~(n;lR)/SO(n,k) ~ Gl(S)’/SO(n,k),

which stands for a homomorphismof smooth principal bundleswhere ji,~°

is smooth and PQ V~= ° PQ for each Q ESO(n,k). Therefore V0 is a Lie
grouphomomorphism.

Now, v0~SO(n,k) is injective; since ZS1(n;IR) C SO(n,k) C Sl(n; IR) and

Sl(n; IR)/ZS1(n;IR) is simple, it is clear thatq0(kerv,~)= 1, whereq0 : Gl~(n;IR)
-+Sl(n; IR) is the projection given by q0(A) = (detA)U’IA; thus,ker ~0C1R~,

and the Lemmais proved. U

Let G = p~’(v0(Gl~(n; IR))). Thenp0 : G —* v0(Gl~(n; IR)) is a double covering.
The transition functions of the trivializations taketheir valuesin G, whence

we can considerhenceforththat F is a principal fiber bundlewith group G. Since
~0(Gl~(n;IR)) Gl~(n;IR)/ker ~ we have that ‘I’ = op : G -÷ Gl~(n;IR)/

ker v0 is a double covering. We have also the correspondingepimorphismof
principal bundles‘I’ :P-÷F~(M)/kerv~.Thus it is clear that the possiblenew-
-spinor structuresare fixed by the following conditions:

a) the choiceof a closedsubgroup,ker v~,of 1R~
b) a doublecovering‘I’ : G -+ Gl~(n; IR)/kerv0 suchthat

c) ~1’’(SO(n, k)) Spin (n,k);
d) the existenceof a principal bundle7T :F-*M with group G, and an epimor-

phismof principal bundlesF-÷F~(M)/kerv0 correspondingto ‘I’.
The new notion of spinor shouldbe that of a crosssectionof a vectorbundle

associatedto F by a representationof G.

Let us considerthe different cases,which correspondessentiallytothe different
closedsubgroupsof ~ Theseare 1, ~ and Z(r) = {emr}m E~ r> 0. We recall
that ir1(Gl~(n; IR)) is 0, ~ or whenn is 1, 2 or> 2, respectively.

We start analysingthe generalcasen > 2. ThenSpin+(n,k) is alwaysconnected
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and7r1(Gl(n;IR)) =rr,(Sl(n;IR)) = ~ By the remarkmadeinthe first paragraph
of section2, it is clearthat for ker = 1 or we have

I. ker P0 = 1, G =DG1(n; IR).
II. Kerv0=lR~,G=DSl(n;lR),

dueto conditionc).
If ker p0 = Z(r), then lR~/kerp0 U(l), the isomorphism being given by

2iri
[x]-+exp — logx , and Gl~(n;lR)/kerv0~U(l) xSl(n;IR). Therefore,

ir1(Gl~(n;lR)/Z(r))= x ~. We considerthe group DU(l) xDSI(n;IR); on
each factor we have the involution i that maps a point into the other point

on the samefiber. Then (id, id) and(i, i) act on that group as a groupof transfor-
mations isomorphic to ~ Thus, we have three candidatesfor G, namely

DU(1) x Sl(n;IR), U( 1) x DSl(n; IR), (DU( 1) x DSI(n;IRfl/~2. The former
makes ‘I’

1(SO(n, k)) = x SO(n,k) and therefore can be dismissedbecause
it contradictscondition c). The other two give correctlya group isomorphicto

Spin(n,k). Thereforewe get

III. ker = Z(r), G = U(l) x DS1(n; IR).
IV. ker v

0 = Z(r), G = (DU(l) x DS1(n;IR~/~2.

Remark. The principal bundlesF~(M)/keri~ are F~(M)for case I, F÷(M)/1R~

for caseII, and P~(M)/Z(r)for casesIII and IV. The associatedtensor fields are
the ordinary ones, tensor 0-densities,and tensordensities of imaginary weight

([2], [3]), respectively.
For n = 1, and for n = 2 k = 1, Spin+(n,k) is not connected.Therefore

the condition c) is irrelevant and we have the possibilitiesG = x Gl~(n;IR)
if kerV0= 1, G = x Sl(n;IR) if ker p0 = IR~,and G = x U(l) x Sl(n; IR)

or G = D U(l) x Sl(n; IR) if ker = Z(r). The correspondingspinorsof the three
first caseswould be equivalentto non-orderedpairs (K, — K) of tensors,tensor

0-densities or tensor densities of imaginary weight; and for the last one, we
would have tensor densities of double imaginary weight. For n = I, thereare

no other possible types,whereasfor n = 2 k = 1 we would also have the four
typesof structureslisted above.

Now the anticlimax comes in. By the results quotedin section 2, any finite-

-dimensionalrepresentationof G factorizeson ‘P and a finite-dimensionalrepre-
sentation of 4’(G). Thus we arrive to the contradictionthat — I E Spin (n,k)

must act on S as the identity insteadas — 1. Therefore,leavingout the rather
trivial cases when unorderedpairs (K, — K) of tensorsor tensor densitiesare

permitted,we concludethat thereare no finite-dimensionaltrue spinorscompa-
tible with thefamily ofpseudo-Riemannianmetricsofa given indexon a smooth

orientedmanifold.
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